Syllabus Book

2nd Year B. Tech. Chemical Engineering

P P Savani University

School of Engineering Department of Chemical Engineering

> Effective From: 2019-20 Authored by: P P Savani University

	P P SAVANI UNIVERSITY SCHOOL OF ENGINEERING													
		TEACHING & EXAMINATION SCHEM					MICAL	ENGINE	ERINGI	PROGRA	MME			
					ing Schen						tion Sche	eme		
Sem	Course Code	Course Name	Contact Hours					The	eory	Pra	ctical	Tutorial		
	Coue		Theory	Practical	Tutorial	Total	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	SESH2031	Differential Methods for Chemical Engineers	3	0	2	5	5	40	60	00	00	50	00	150
	SECH2010	Chemical Process Calculation	3	0	1	4	4	40	60	00	00	50	00	150
	SECH2020	Mechanical Operations	3	2	0	5	4	40	60	20	30	00	00	150
3	SECH2030	Unit Processes in Organic Synthesis	3	2	0	5	4	40	60	20	30	00	00	150
	SECH2040	Chemical Engineering Materials and Metallurgy	3	2	0	5	4	40	60	20	30	00	00	150
	SEPD2010	Critical Thinking, Creativity & Decision Making	2	0	0	2	2	40	60	00	00	00	00	100
	SECH2910	Industrial Exposure	2			0	2	00	00	100	00	00	00	100
		Total				26	25						950	
	SESH2022	Numerical & Statistical Analysis	3	0	2	5	5	40	60	00	00	50	00	150
	SECH2050	Fluid Flow Operations	3	2	0	5	4	40	60	20	30	00	00	150
	SECH2061	Physical, Inorganic & Analytical Chemistry	3	2	0	5	4	40	60	20	30	00	00	150
4	SECH2070	Chemical Engineering Thermodynamics-I	3	0	2	5	5	40	60	00	00	50	00	150
	SECH2080	Mass Transfer Operations - I	3	2	0	5	4	40	60	20	30	00	00	150
	SEPD2020	Values and Ethics	2	0	0	2	2	40	60	00	00	00	00	100
	SEPD3030	Foreign Language (German)	3	0	2	2	2	40	60	00	00	00	00	100
		Total				29	26							950

CONTENT

Semester 3

Sr. No.	Course Code	Course Name	Page No.
1	SESH2031	Differential Methods for Chemical Engineers	01-03
2	SECH2010	Chemical Process Calculation	04-06
3	SECH2020	Mechanical Operations	07-10
4	SECH2030	Unit Processes in Organic Synthesis	11-14
5	SECH2040	Chemical Engineering Materials and Metallurgy	15-18
6	SEPD2010	Critical Thinking, Creativity & Decision Making	19-20
7	SECH2910	Industrial Exposure	21-22

Semester 4

Sr. No.	Course Code	Course Name	Page No.
1	SESH2022	Numerical & Statistical Analysis	23-25
2	SECH2050	Fluid Flow Operations	26-29
3	SECH2061	Physical, Inorganic & Analytical Chemistry	30-33
4	SECH2070	Chemical Engineering Thermodynamics-I	34-36
5	SECH2080	Mass Transfer Operations – I	37-39
7	SEPD2020	Values and Ethics	40-41
8	SEPD3030	Foreign Language	42-44

Department of Science & Humanities

Course Code: SESH2031 Course Name: Differential Methods for Chemical Engineers Prerequisite Course(s): SESH1010-Elementary Mathematics for Engineers

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Examination Scheme (Marks)					
Theory	Practical	Tutorial	Credit -	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	TULUTIAI		CE	ESE	CE	ESE	CE	ESE	TOLAT
03	00	02	05	40	60	00	00	50	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- learn orientation of calculus and its applications in solving engineering problems including differential equations.
- learn introduction of Partial Differential Equations with methods of its solutions.
- learn applications of Integral Transforms for solving linear differential equations.
- learn introduction of Periodic functions and Fourier series with their applications for solving ODEs.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Ordinary Differential Equation First order ODEs, Formation of differential equations, Solution of differential equation, Solution of equations in separable form, Exact first order ODEs, Linear first order ODEs, Bernoulli Equation, ODEs of Second and Higher order, Homogeneous linear ODEs, Linear Dependence and Independence of Solutions, Homogeneous linear ODEs with constant coefficients, Differential Operators Nonhomogeneous ODEs, Undetermined Coefficients, Variation of Parameters.	10	22
2.	Partial Differential Equation Formation of First and Second order equations, Solution of First order equations, Linear and Non-liner equations of first, Higher order equations with constant coefficients, Complementary function, Particular Integrals.	07	15
3.	Integral Transform-A Laplace Transform, Linearity, First Shifting Theorem, Existence Theorem, Transforms of Derivatives and Integrals, Unit Step	06	13

	Function, Second Shifting Theorem, Dirac's Delta function, Laplace Transformation of Periodic function, Inverse Laplace transform, Convolution								
	Section II								
Module No.	Content	Hours	Weightage in %						
1.	Integral Transform-B Introduction of Z transform, Linearity property, Damping rule, Basic theory of Z transform, Inverse Z-transform, Convolutions theorems, Application to Difference Equations	09	21						
2.	Fourier Series Periodic function, Euler Formula, Arbitrary Period, Even and Odd function, Half-Range Expansions, Applications to ODEs.	06	14						
3.	Fourier Integral and Transformation Representation by Fourier Integral, Fourier Cosine Integral, Fourier Sine Integral, Fourier Cosine Transform and Sine Transform, Linearity, Fourier Transform of Derivatives.	07	15						

List of Tutorials:

Sr. No.	Name of Tutorial	Hours
1.	Ordinary Differential Equation-1	2
2.	Ordinary Differential Equation-2	2
3.	Ordinary Differential Equation-3	4
4.	Partial Differential Equation-1	2
5.	Partial Differential Equation-2	4
6.	Laplace Transform	2
7.	z-Transform-1	2
8.	z-Transform-2	2
9.	z-Transform-3	4
10.	Fourier Series-1	2
11.	Fourier Series-2	2
12.	Fourier Integral and Transformation	2

Text Book(s):

Title	Author/s	Publication
Advanced Engineering Mathematics	Erwin Kreyszig	Wiley India Pvt. Ltd.

Reference Book(s):

Title	Author/s	Publication
Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers
Advanced Engineering Mathematics	R. K. Jain, S.R.K.	Narosa Publishing House Pvt.
	Iyengar	Ltd.
Differential Equations for Dummies	Steven Holzner	Wiley India Pvt. Ltd.
Higher Engineering Mathematics	H.K. Dass, Er. Rajnish	S. Chand & Company Pvt. Ltd.
	Verma	

Web Material Link(s):

- 1) <u>http://nptel.ac.in/courses/111105035/</u>
- 2) http://nptel.ac.in/courses/111106100/
- 3) <u>http://nptel.ac.in/courses/111105093/</u>
- 4) http://nptel.ac.in/courses/111108081/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which will be evaluated out of 10 marks for each tutorial and average of the same will be converted to 30 marks.
- MCQ based examination consists of 10 marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

- grasp the respective 1st and 2nd order ODE and PDE.
- analyze engineering problems (growth, decay, flow, spring and series/parallel electronic circuits) using 1st and 2nd order ODE.
- classify differential equations and solve linear and non-linear partial differential equations.
- understand concepts, formulas, and problem-solving procedures to thoroughly investigate relevant real-world problems.

Department of Chemical Engineering

Course Code: SECH2010 Course Name: Chemical Process Calculations Prerequisite Course(s): --

Teaching & Examination Scheme:

J	,									
Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Flattical	TULUTIAI	Crean	CE	ESE	CE	ESE	CE	ESE	TOLAI
03	00	01	04	40	60	00	00	50	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- know the conventions and the methods of chemical process.
- develop the basic acumen for the Chemical Engineering and its calculations.
- know how to carry out various process calculations.
- improve their analytical skills for various chemical processes.
- improve their technical ability in the form of numerical analysis of chemical problems.

	Section I								
Module No.	Content	Hours	Weightage in %						
1.	Introduction: Chemical Engineering and Chemical Industry, Steady state and unsteady state processes, Unit Operations, Unit Processes and Process Flow Diagrams.	02	03						
2.	Graphics and Basics of Chemical Processes: Graphical methods of curve fittings, Method of least squares, Solution of cubic equations by trial and error method, Conversion of units, Dimensional analysis, Properties of gas, liquid and solid, Equations of state.	03	07						
3.	Basic Calculations: State properties: Molecular weight, Compositions, Density, Vapor pressure etc for gas, liquid and solid systems, Thermal properties: Heat capacity, Sensible heat, Latent heat, Heat of reaction, Heat of solution, Enthalpy calculations etc. for gas, liquid and solid systems, Techniques of problem Solution: Analytical, Graphical and Numerical, Gas laws and phase equilibria, Humidity, Saturation and Crystallization.	09	20						

	Material Delevere		
4.	Material Balances: Materials balance: Concepts of limiting and excess reactants, Batch, Stage-wise, Continuous and recycle operations, Material balance of systems involving mixing, extraction, distillation, crystallization, chemical reaction and recycle processes, Material balance equations based on conservation principle, Material balances for non-reactive processes (Unit Operations), Material balances for reactive processes.	10	20
	Section II		
Module No	Content	Hours	Weightage in %
1.	Vapour pressure: Vapour pressure plots, Vapour pressure of immiscible liquids and vapour pressure of solutions; Humidity and saturation humidity chart, Super saturation, Distribution of a solute between immiscible and partially miscible liquids, Solubility of gases.	02	05
2.	Thermo physics and Energy Balances: Energy balances for closed and open systems based on energy conservation principle, Energy balances for non-reactive processes (Unit Operations), Energy balances for reactive processes, Coupled material and energy balances for single unit process, Heats of formation, combustion, reaction, solution, dilution, Effect of temperature on heat of reaction, Energy balance of systems without and with chemical reactions, Heat capacity calculations, Enthalpy changes of reactions, dissolution and laws of thermochemistry, Effect of pressure and temperature on heat of reactions.	12	25
3.	Multiple Unit Processes: Introduction to processes with multiple Units; Material balances on processes with recycle, Purge, and bypass, Introduction to DOF analysis and solution strategy for multi-unit process, Degrees of freedom in steady-state processes, Simultaneous material and energy balance problems using flow sheeting codes, Unsteady state material and energy balances.	07	20

Text Book(s):

Title	Author/s	Publication
Stoichiometry	Bhatt, B.I. and Vora, S.M.	Tata McGraw-Hill Publishing Co., New Delhi.
Chemical Process	Hougen, O.A., Watson. K.M.	John Wiley & Sons, (CBS Publishers &
Principles Part-I	and Ragatz, R.A.	Distributor, New Delhi).

Reference Book(s):

Title	Author/s	Publication
Basic Principles and Calculation in	Himmelblau, D.M.	Prentice Hall, Inc.
Chemical Engineering	niiiiiieibiau, D.M.	Frencice nan, inc.
Introduction to Chemical	S K Ghoshal, S K Sanyal	Tata McGraw-Hill Publishing Co.
Engineering	and S Dutta	Ltd., New Delhi.
Conservation of Mass and Energy	Whitwell J.C. &Jone R.K.	McGraw-Hill, Singapore, 1973

Web Material Link(s):

• http://nptel.ac.in/courses/103103039/23

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which should be evaluated out of 10 Marks for each tutorial and average of the same will be converted to 30 marks.
- Numerical Test consists of 10 marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

- know and understand the basics of Chemical Engineering calculations.
- interpret the data for Chemical Engineering process scenarios.
- apply the knowledge of the principles of Chemical Engineering reactions.
- enhance their technical skills in the form of numerical analysis.

Department of Chemical Engineering

Course Code: SECH2020 Course Name: Mechanical Operations Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)							
Theory	Practical Tutorial		al Tutorial Credit		eory	Prac	ctical	Tut	orial	Total
Theory	FIACULAI	TULUTIAI	Credit	CE	ESE	CE	ESE	CE	ESE	TOLAI
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- understand many basic principles of Chemical Engineering operations such as Size Reduction, Filtration, Sedimentation, Mixing and Agitation etc. and their mathematical co-relation.
- understand basic principles of particle preparation and their characterization.
- study various methods for storage of solids and conveyors available for their transportation.
- understand the performance of different equipment for separation of solids and size reduction

	Section I					
Module No.	Content	Hours	Weightage in %			
1.	Properties of particulate solid Introduction to particle technology, Characterization of solid particles, particle size measurement techniques, Mixed particles, specific surface of mixture, Particle population.	02	05			
2.	Size reduction and enlargement Types of equipment and their studies, Principles of comminution, Laws of crushing and grinding, Closed and open circuit grinding, power requirements, Energy and power required for comminution, Industrial processes for particle size enlargement, size enlargement equipment comminution, Broad classification, Primary breaking operations, Intermediate crushing by crushers, cone, roll and impact crushers, Ball and fumbling mills—fine grinding, Determination of power consumption.	10	20			
3.	Properties of masses of solids Storage of solids: Angle of repose, bulk storage, storage in bins and silos.	02	08			

		1	
4.	Conveying of solids Codes for characterization of solids, screw conveyers, belt conveyers, bucket elevators, pneumatic conveying of solids, Design of conveyor belts, Mechanical and pneumatic conveying equipment and power consumption.	03	07
5.	Screening - equipment and efficiency Screen analysis, Method of reporting screen analysis, Capacity and effectiveness of screens, Screen analysis, sizing curves, industrial sizing, screening revolving and vibrating screens, Screen efficiency and capacity, Classification: Laws, wet and dry methods, Types of classifiers—stationary, mechanical, centrifugal and hydraulic.	05	10
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Filtration Flow through porous media, Theories of filtration - Principles of filtration, constant rate and constant pressure filtration, Optimum cycle, compressible cakes and filter aids, constant pressure, constant rate filtration, compressible and incompressible cakes, cake resistance, filter media resistance, filter media, filter aids, filtration equipment (batch, continuous), selection criteria, washing of filter cakes, filtration by continuous vacuum and pressure filters.	06	15
2.	Gravity setting and sedimentation Gravity clarifiers, sorting clarifiers, Batch sedimentation, rate of sedimentation, Thickening process and sedimentation, Design of thickeners and clarifiers free and hindered setting, Centrifugal sedimentation: Principles of centrifugal sedimentation, Solid gas separation, liquid solid separation, Centrifugation.	05	10
3.	Mixing Mixing equipment and characteristics, power consumption and efficiency, mixing of powders and pastes: Mixers for cohesive and non-cohesive solids, Mixing Index Agitation and mixing of liquids: Basic stirred tank design, Types of impellers, flow patterns, power consumption and scale up.	06	10
4.	Separators Cyclones and electrostatic precipitator, Flotation, Thickeners, Flotation, Physico-chemical principles, Chemistry of flotation reagents and their functions, Flotation processes, Froth flotation machines, Concentration of copper, lead and zinc ores by flotation, Flotation of non-sulphide ores of copper and lead, dolomite, fluorspar, gypsum, phosphates, manganese, silica, sillimanite, graphite and coal, Electrical and magnetic concentration, Electrostatic and magnetic separations, dry and wet type separators.	06	15

List of Practical:

Sr No	Name of Practical	Hours
1.	Determination of particle size by sieve analysis.	02
2.	Determination of the optimum speed and critical speed of a ball mill.	02
3.	Measurement of different bulk properties of powder samples.	02
4.	To study powder compaction behavior using different powder compaction models.	02
5.	Study of particle size reduction by Roll crusher and Jaw crusher	04
6.	Characterization of powder flow ability by Angle of Repose.	04
7.	Obtaining the collection efficiency of cyclone	02
8.	Obtaining settling rates of slurry as function of solid concentration	02
9.	Power consumption in Agitated vessels	02
10.	Study of froth flotation process	02
11.	Study of Plate and Frame filter place	04
12.	Study of Centrifugation process	02

Text Book(s):

Title	Author/s	Publication
Unit Operations of Chemical	W L McCabe and J C Smith	McGraw-Hill International
Engineering		
Principles of Mineral Dressing	A M Gaudin	Tata McGraw-Hill Publishing
		Co. Ltd., New Delhi
Elements of Ore Dressing	A F Taggart	John Wiley and Sons, New York

Reference Book(s):

Title	Author/s	Publication
Chemical Engineering Vol II, 6th	J.M. Coulson & J.F.	Elsevier, 2003 or
Ed.	Richardson	Pergamon Press
Unit Operations	G.G. Brown Ed.	John Wiley & Sons, 1950
Transport Processes and Separation Process Principles' 4th Ed,	C.G. Geankopolis	Prentice Hall India, 2003

Web Material Link(s):

http://nptel.ac.in/syllabus/103107091

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation of various topics consists of 15 marks during End Semester Exam.

Course Outcome(s):

- understand the basic principles of particles preparation and their characterization.
- have an understanding of solid storage and their conveying in chemical process industries.
- have an understanding of design of sedimentation tanks and other solid fluid separation equipment.
- have knowledge about different size reducing equipment and power requirements during size reduction.
- develop an ability to design chemical engineering processes while including economic safety, environment and ethical consideration.

Department of Chemical Engineering

Course Code: SECH2030 Course Name: Unit Processes in Organic Synthesis Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)							
Theory	Practical Tutorial		Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	TULUTIAI	Credit	CE	ESE	CE	ESE	CE	ESE	TOLAI
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help the learners to

- develop an acumen for various chemical processes used in industries
- develop a mindset for various organic synthesis
- develop an acumen for design and development of process flow diagrams (PFDs) for various chemical processes

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Introduction Definition and importance of unit processes in chemical engineering, Concept of unit operation and unit processes and their role in systematizing the cognitive structure of chemical industries, Classification of unit processes, Chemical process kinetics and Factors affecting, Symbols used in Chem. Engineering, Process flow diagram, Introduction to thermochemistry	04	09				
2.	Nitration Introduction to nitration reactions, Nitrating agents, Aromatic Nitration, Kinetics and mechanism of aromatic nitration, Nitration of paraffinic hydrocarbon, Thermodynamics of nitration, Process equipment for technical nitration - schimid and Biazz nitrator, Mixed acid for nitration, D.V.S. value and nitric reaction, Comparison of batch Vs. Cont. nitration, Mfg. of Nitrobenzene, Dinitrobenzene, O-and P-Chloronitrobenzene, tri nitrotoluene.	05	12				

		r	
3.	Amination by reduction Introduction to Amination reactions, Various methods of reductions and factors affecting it, Iron and acid (Bechamp) reduction, Batch and continuous process for manufacture of Aniline from Nitrobenzene, Continuous process for manufacturing of Aniline from nitrobenzene using catalytic fluidized bed reactor.	05	11
4.	HydrogenationDefinition and scope of hydrogenation, Hydrogen: productionand properties, Gas catalytic hydrogenation and hydrogenlysis,Kinetics and thermodynamics of hydrogenation reactions,General principles concerning hydrogenation catalysts,Industrial hydrogenation of fat & oil, Production of methanolfrom CO_2 & H_2 . Hydrogen production technologies andpetroleum fractions.	03	07
5.	Oxidation Definition and Types of oxidative reactions, Oxidizing agents, Liquid phase oxidation with oxidizing compounds, Liquid-phase oxidation with oxygen, Oxidation of toluene with MnO2. Manufacturing of Acetaldehyde from Acetic acid and Manufacturing of Acetic acid from Ethanol; Vapor phase oxidation of Methanol, Benzene and Naphthalene, Apparatus and its M/s. for oxidation reactions.	05	11
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Esterification and Hydrolysis Definition and scope of Esterification, Esterification by organic acids and by carboxylic acid derivatives, Esters by addition to unsaturated systems and inorganic acids, Definition and scope of hydrolysis, Hydrolyzing agents, Materials susceptible to hydrolysis, Kinetics, thermodynamics, and mechanism of hydrolysis, Equipment for hydrolysis with technical operations.	03	06
2.	HalogenationDefinition and scope of halogenation reactions,Thermodynamics and kinetics of halogenation reactionsHalogenating agents, Industrial halogenation with types ofequipment, Manufacturing of Chlorobenzene, Benzene hexa-chloride and vinyl chloride from Ethylene and Acetylene.	05	09
	Sulfonation and sulfation Definition and scope of sulfonation and sulfation, Chemical and		

4.	Amination by ammonolysis Definition & types of reactions, Aminating agents, Physical and Chemical factors affecting it. Catalyst used in ammonolysis, Kinetics and Thermodynamics of ammonolysis Mfg. of Aniline from chlorobenzene and Nitroaniline from Dichloro Nitro Aniline.	04	08
5.	Hydrolysis Definition and types of hydrolysis, Hydrolyzing agents, Kinetics, thermodynamics, and mechanism of hydrolysis, Industrial Hydrolysis of fat, hydrolysis of carbohydrates, starch to dextrose, Manufacturing of ethanol from ethylene (shell process) Mfg. of phenol from benzene sulfonic.	05	09
6.	PolymerizationIntroduction & chemistry of polymerization reactions,classifications of polymers methods of polymerization.	02	08

List of Practical:

Sr No	Name of Practical	Hours
1.	Preparation of Urea-formaldehyde Resin	02
2.	Synthesis of Phenol-formaldehyde Resin	02
3.	Manufacturing of m-dinitrobenzene from Nitrobenzene	04
4.	Determination of amount of benzoic acid in given sample	04
5.	Residual Chlorine in water	02
6.	Estimation of phenol by bromination	04
7.	Determination of Ascorbic acid in a given sample	04
8.	Determination of amount of acid neutralize capacity by given antacid sample	02
9.	Preparation of Azo dye	02
10.	Determination of oil absorption value of given pigment sample	04

Text Book(s):

Title	Author/s	Publication
Unit Processing of Organic	Groggins P. H.	Tata-McGraw Hill, New Delhi, 2001
Synthesis, 5 th edition		
Shreve's Chemical Process	Austin G. T	McGraw-Hill Pub., 1994.
Industries, 5 th Edition		
Unit Processes in Organic	Desikan, P and	Chemical Engineering Education
Chemical Industries	Sivakumar, T.C.	Development Centre, IIT Madras, 1982.

Reference Book(s):

Title	Author/s	Publication
Dryden's Outlines of	Gopalarao. M. &	East-West Pub., New Delhi, 1997.
Chemical Tech. 2nd Ed.	Sitting M.	East-west Pub., New Denn, 1997.
Elementary Principles of	Felder R.M., Rousseau	John Wiley, New York, 2000.
Chemical Processes3rd ed.	R.W.	John Whey, New Fork, 2000.

Riggel's Handbook of	Kent J.A.	Van Nostrant Reinhold, 1974.
Industrial Chemistry	Kent J.A.	

Web Material Link(s):

• <u>http://nptel.ac.in/courses/103107082/3</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

- build a basic knowledge of the Fundamental structure of organic molecules and their manufacturing process.
- understand and explain the reactions in organic synthesis.
- correlate the same as per their utility in field of Chemical Engineering.
- understand the various Unit Processes and learn about the chemistry and organic compound.

Chemical Engineering Materials & Metallurgy

Course Code: SECH2040 Course Name: Chemical Engineering Materials & Metallurgy Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	aminati	on Schei	ne (Ma	rks)		
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	FIACULAI	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	TOLAI
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- identify the different chemicals and related materials and their properties.
- understand the microstructures, crystallography, defects, and phase diagrams of different materials.
- help the students to understand the process involved in chemical and mechanical testing of materials under certain conditions.
- make them aware about the advancements in the area of materials used in chemical and allied industries.

	Section I				
Module No.	Content	Hours	Weightage in %		
1.	Introduction to Engineering Materials Classification of engineering materials, Engineering requirements from materials, Basics of crystals and their correlated properties, Factors that govern material selection for engineering applications, Micro and macro examination.	02	07		
2.	Structure and Imperfections in Crystals Introduction, Unit cells and their lattice structure, coordination number, crystal structure of metals, Atomic packing factor, Crystallographic planes and directions, Polymorphism and Allotropy, Diffusion in solids, Imperfection in crystals and their types.	04	03		
3.	Properties of Materials Mechanical, Electrical and magnetic properties of materials, Selection of material like SS, Ti/Zr alloy and design for corrosion control, Factors determining the choice of materials of construction in chemical industries.	02	05		

	· · · · ·		I
4.	Ferrous metals and its Alloys Iron and their alloys - Aluminium, copper, Zinc, lead, Nickel and their alloys with reference to the application in chemical industries. Phase Diagrams and Phase Transformation, TTT and CCT Diagrams. Iron-Iron Carbide and Iron-carbon diagrams, Overview of different types of irons - Wrought iron Pig iron, Cast iron, White Cast Iron, Grey Cast Iron, Malleable Cast Iron and their properties and characteristics, deformation of metals, Types of steel like Chromium, Manganese, Molybdenum and Manganese steels.	06	15
5.	Non-Ferrous Alloys Non-Ferrous Alloys of Aluminium, Magnesium, Copper, Nickel, Titanium, Lead, Tin, Bearing metals, Zinc, Microstructure and mechanical property relationships.		Laboratory
6.	Metals: their behaviours and properties Solidification of metals and an alloy, Nucleation and Growth, Solidification defects, Effects of Structure on Mechanical Properties, Methods to control the grain structure resulting from solidification, Cooling curve of pure metal and alloy, Deformation in polycrystalline materials, Mechanical testing of materials (destructive & non-destructive) testing methods.	05	12
7.	Heat Treatment and Surface hardening processes Annealing and its types, Normalizing, Aus-tempering, Mar- tempering, Quenching and Temper heat treatment, Hardenability, Applications of above processes for the industrial practices, Flame and induction hardening, Carburizing, Nitriding and Carbonitriding, Applications of above processes for the industrial practices.	04	08
8.	Powder MetallurgyApplication and advantages, Production of powder,Compacting, Sintering, Equipment and process capability.		Laboratory
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Polymers, Ceramics, and Composites: Methods of fabrication of materials like timber, plastics, rubber, fibres and other polymeric materials, Ceramics, Ceramic Matrix, Crystalline and non-crystalline ceramic systems, Properties of ceramic materials, Glass and refractories, Cement refractories, Alumina, Zirconia, Silicon Carbide, Sialons, Reaction Bonded Silicon Nitride, Processing Composite materials, Fibre reinforced plastic (FRP), Organic materials like wood, plastics, and rubber, Advanced materials like Biomaterials and composites with special reference to the applications in chemical Industries, Polymers - Definition, Classification & characteristics, Types of polymerization, Polymer processing,	08	15

	Smart polymer, Advanced polymer Conductive polymer, bio- route prepared nano polymer, Blended polymer, self-cleaning polymer surfaces.		
2.	Membrane Materials and modules Membrane and their types, Membrane Materials, Modules and their types, method of preparation of various membranes, Industrial applications.	04	10
3.	Applications of advance materials in chemical Engineering Colloidal Materials and Their Industrial Applications, Surfactants, Mixed surfactants, Micelles, Vesicles, Micelles, Reverse micelles, Emulsions, Macroemulsions, foams, Thin Films, microbial polymers, green solvents, Industrial enzymes, Protein as Enzymes, Gels and Smart Hydrogels like Hydrogel, Core and shell hydrogel, shell and core hydrogel, green hydrogel, stimuli responsiveness hydrogel.	06	15
4.	Nano materials Metal and Semiconductor Nano materials, Quantum Dots, Wells and Wires, Molecule to bulk transitions, Bucky balls and Carbon Nano tubes, Nano composite, Molecular machines, Nanofactories, Nanocatalysts, Nanocomposites, Bio-analytical tools, Nano/micro arrays, Nano devices, lab-on-a-chip etc.	04	10

List of Practical:

Sr. No.	Name of Practical	Hours		
1.	To understand construction and working of metallographic microscope.	02		
2.	To study procedure of specimen preparation for microscopic examination and to carry out a specimen preparation.			
3.	To understand what is micro examination, importance of micro examination and to study various ferrous, non-ferrous microstructures.	04		
4.	To show the effect of different quenching media like Oil, Water and Brine on the hardness of medium carbon steel.			
5.	To find out the effect of varying section size on hardenability of steel and obtain hardness distribution curves of hardened steel cross-section.			
6.	To determine machine defects by dye -penetrant test and magnetic particle test.	04		
7.	To determine the hardenability by Jominy end quench test.	04		
8.	Study of different heat treatment processes- annealing, normalizing, hardening and tempering, surface and casehardening to improve properties of steel during processes and applications with the help of muffle furnace.	04		

Text Book(s):

Title	Author/s	Publication
Materials Science and Metallurgy	O. P. Khanna	Dhanpatrai Publication
Chemical Engineering Materials	Rumford F.	Constable and Company Limited, 2nd Edition, 1987
Membrane Separation Processes	Kaushik Nath	PHI Pvt. Ltd., 2008

Principles of Colloid and Surface Chemistry, 3rd Edn.	Hiemenz, P. C., and R. Rajgopalan	Marcel Dekker, NY, 1997.
Nano chemistry A chemical approach	Ozin G. A, Andre C.	Royal society of chemistry,
to nanomaterials	Arsenault	UK,2005.

Reference Book(s):

Title	Author/s	Publication	
Callister's Material Science and	l Science and R. Balasubramanian Wiley India		
Engineering	R. DalaSubi allialiali	Wiley India	
Chemical Engineering Materials	Chaudhry H.	Indian Book Distributing Company,	
		2nd Edition, Delhi, 1982	

Web Material Link(s):

• http://nptel.ac.in/downloads/113106032/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

- interpret important chemical and mechanical properties and classification of engineering materials and metals.
- define different heat treatment process used in industrial applications.
- understand the different types of metals, alloys and chemical materials.
- analyze different microstructure, crystallography and defects of Chemical Engineering materials and metals.
- identify different destructive & non-destructive testing methods used in the practical field and their applications.
- understand the use powder metallurgy and their application to industries.

Centre for Skill Enhancement & Professional Development

Course Code: SEPD2010 Course Name: Critical Thinking, Creativity and Decision Making Prerequisite Course(s): --

Teaching & Examination Scheme:

	8	·											
	Teaching Scheme (Hours/Week)				Teaching Scheme (Hours/Week) Examination Scheme (Marks)								
	Theory	Practical	Tutorial Credit		Tutorial	Credit	Theory		Prac	ctical	Tut	orial	Total
		FIALLILAI	Tutorial	creuit	CE	ESE	CE	ESE	CE	ESE	TOLAI		
	02	00	00	02	40	60	00	00	00	00	100		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- develop a familiarity with the mechanics of critical thinking and logic.
- understand basic concepts of critical and creative thinking.
- explore and understand critical thinking for the purpose of creativity in context of professional, social and personal spectrum.
- explore an application critical thinking and creativity in personal, social, academic, global and profession life.
- understand Decision making as a skill to be learned through critical thinking.

	Section I					
Module No.	Content	Hours	Weightage in %			
	Introduction to Critical Thinking					
	Concept and meaning of Critical Thinking					
1.	Significance of Critical Thinking in personal, social and	08	25			
	professional life					
	Thinking with arguments, evidences and language					
	Applied Critical Thinking					
2.	Inductive and Deductive Thinking	07	25			
Δ.	Questioning for Generating Ideas	07	23			
	Socratic Questioning and its application					
	Section II					
Module	Content	Hours	Weightage			
No.	Content	nours	in %			
	Conceptual Thinking					
1.	Second order thinking	03	10			
	• Synthesizing					

	Creative Thinking and Decision Making		
2.	Problem Solving	06	20
	Adapting Various Structures of Decision Making		
	Moral Thinking		
3.	Generating and structuring ideas	06	20
5.	Designing and Evaluating the solutions	06	20
	Case Study		

Text Book(s):

Title	Author/s	Publication
Thinking Skills for Professionals	B. Greetham, Palgrave	Macmillan, 2010

Reference Book(s):

Title	Author/s	Publication
An Introduction to Critical Thinking and	J. Y. F. Lau	John Wiley & Sons., New
Creativity: Think More, Think Better		Jercy
Critical Thinking: A Beginner's Guide to	Jennifer Wilson	CreateSpace Independent
Critical Thinking, Better Decision		Publishing Platform, 2017
Making and Problem Solving		
Creativity and Critical Thinking	edited by Steve Padget	Routledge 2013

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

- comprehend the concept and application of critical thinking as well as its applications.
- understand the critical thinking in context of creativity, logical arguments, moral reasoning.
- understand the application of critical thinking for social, academic, global and professional spectrum.
- correlate their thinking skills for better productivity and outcome-based tasks.
- in a better position to apply 360° analysis of the situation for decision making.

Department of Civil Engineering

Course Code: SECH2910 Course Name: Industrial Exposure Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Teaching Scheme (Hours/Week)Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Flattical	Tutoriai	creuit	CE	ESE	CE	ESE	CE	ESE	Total
00	00	00	02	00	00	100	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective of the Course:

To help learners to

- get exposed to the industrial spectrum.
- learn the mechanisms of industry/ workplace.
- be aware about work culture and policies of industries.

Outline of the Course:

Sr. No	Content
1.	Selection of Companies
2.	Company Information collection
3.	Report Writing
4.	Presentation & Question-Answer

Course Evaluation:

Sr. No.	Evaluation criteria	Marks
1	Actual work carried & Report Submission	50
2	Final Presentation & Question-Answer session	50
	Grand Total:	100

Course Outcome:

- get acquainted with the industrial scenario.
- be aware about his future prospects in the respective field.
- gain knowledge of work culture and industrial expectations.

Report Writing Guidelines

A. Report Format:

1. Title Page (to be provided by the respective supervisor)

The title page of the project shall give the following information in the order listed:

- Full title of the project as approved by the Mentor;
- The full name of the student/Group of students with enrollment number;
- The qualification for which the project is submitted;
- The name of the institution to which the project is submitted;
- The month and year of submission.
- 2. Project Certification Form

[The form should be duly filled signed by the supervisors.]

- 3. Acknowledgements [All persons (e.g. supervisor, technician, friends, and relatives) and organization/authorities who/which have helped in the preparation of the report shall be acknowledged.]
- 4. Table of Contents/Index with page numbering
- 5. List of Tables, Figures, Schemes
- 6. Summary/abstract of the report.
- 7. Introduction/Objectives of the identified problem
- 8. Data Analysis and Finding of Solution
- 9. Application of the identified solution
- 10. Future Scope of enhancement of the Project and Conclusion
- 11. "Learning during Project Work", i.e. "Experience of Journey during Project Duration"
- 12. References(must)
- 13. Bibliography
- 14. Annexures (if any)

B. Guideline for Report Formatting:

- Use A4 size page with 1" margin all sides
- Header should include Project title and footer should contain page number and enrollment numbers
- Chapter Name should be of Cambria font, 20 points, Bold
- Main Heading should be of Cambria font, 14 points, Bold
- Sub Heading should be of Cambria font, 12 points, Bold
- Sub Heading of sub heading should be of Cambria font, 12 points, Bold, Italic
- Paragraph should be of Cambria font, 12 points, no margin at the start of the paragraph
- Line spacing for all content 1.15, before 0, after 0
- No chapter number for references
- Before chapter 1, give page numbers in roman letter

Department of Science & Humanities

Course Code: SESH2022 Course Name: Numerical & Statistical Analysis Prerequisite Course(s): SESH1020-Linear Algebra & Vector Calculus SESH2031-Differential Methods for Chemical Engineers

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Teaching Scheme (Hours/Week) Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Flattical	TULUTIAI	Creuit	CE	ESE	CE	ESE	CE	ESE	TOLAT
03	00	02	05	40	60	00	00	50	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- provide the knowledge of numerical analysis & statistical methods to the students.
- mentally prepare the students to identify and formulate the engineering problem and obtain their solution.
- inculcate the analytical skill of the students to apply the Numerical & Statistical techniques to the problems of respective field.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Complex Variables Complex numbers with operators and geometric representation, Analytic function, Derivative of complex function, Cauchy- Riemann equation, Trigonometric and Hyperbolic functions, Complex Integration, Conformal Mapping, Linear functional transformations, Cauchy's Integral, Calculation of residue	10	20
2.	Numerical Solutions of Linear and Non-linear Equations Errors and Their computations, General error formula, Bisection Method, Iteration Method, Newton-Raphson Method, Solution of system of non-linear equation, Solution of linear system, Gauss Elimination	6	13
3.	Numerical Differentiation and Integration Interpolation, Finite Differences, Error in numerical differentiation, Cubic Splines Method, Differentiation Formulae, Numerical solution of ODEs, Picard's Method, Euler's Method, Runge-Kutta Method, Numerical Integration, Trapezoidal Rule, Simpson's 1/3-rule, Simpson's 3/8-rule, Euler-Maclaurin Formulae	7	17

	Section II		
Module	Content	Hours	Weightage in %
1.	Basics of Statistics Elements, Variables, Observations, Quantitative and Qualitative data, Corss-sectional and Time series data, Frequency distribution, Dot plot, Histogram, Cumulative distribution, Measure of location, Mean, Median, Mode, Percentile, Quartile, Measure of variability, Range, Interquartile Range, Variance, Standard Deviation, Coefficient of Variation, Regression Analysis, Regression line and regression coefficient, Karl Pearson's method	7	15
2.	Probability Distribution Introduction, Conditional probability, Independent events, independent experiments, Theorem of total probability and Bayes' theorem, Probability distribution, Binomial distribution, Poisson distribution, Uniform distribution, Normal distribution.	8	18
3.	Testing of Hypothesis Introduction, Sampling, Tests of significance for parametric test, Null Hypothesis, Type 1 and Type 2 errors, Level of significance, Chi-square test, Student's t-test, Seducer's f-test	7	17

List of Tutorials:

Sr. No.	Name of Tutorial	Hours
1.	Complex Variables-1	4
2.	Complex Variables-2	2
3.	Numerical Solutions of Linear and Non-linear Equations-1	2
4.	Numerical Solutions of Linear and Non-linear Equations-2	4
5.	Numerical Differentiation and Integration-1	2
6.	Numerical Differentiation and Integration-2	2
7.	Basics of Statistics-1	2
8.	Basics of Statistics-2	4
9.	Probability-1	2
10.	Probability-2	2
11.	Testing of Hypothesis-1	2
12.	Testing of Hypothesis-2	2

Text Book(s):

Title	Author/s	Publication
Advanced Engineering Mathematics	Erwin Kreyszig	Wiley India Pvt. Ltd.
		New Delhi.
Probability and Statistics for Engineers	Richard A. Johnson	Pearson India Education
	Irwin Miller, John Freund	Services Pvt. Ltd., Noida.

Reference Book(s):

Title	Author/s	Publication
Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers, New Delhi
Advanced Engineering Mathematics	R. K. Jain, S. R. K.	Narosa Publishing House, New Delhi.
	lyengar	
Introductory Methods of Numerical	S. S. Sastry	PHI Learning Pvt. Ltd., New Delhi.
Analysis		

Web Material Link(s):

- <u>http://nptel.ac.in/courses/111106094/</u>
- <u>http://nptel.ac.in/courses/111106084/</u>
- <u>http://nptel.ac.in/courses/111105035/</u>
- <u>http://nptel.ac.in/courses/111101003/</u>
- http://nptel.ac.in/courses/111105090/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which will be evaluated out of 10 marks for each tutorial and average of the same will be converted to 30 marks.
- MCQ based examination consists of 10 marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

- derive numerical solution of linear and non-linear system of equation.
- acquire knowledge of finite differences, interpolation, numerical differentiation and numerical integration.
- select appropriate method to collect data and construct, compare, interpret and evaluate data by different statistical methods.
- apply concept of probability in decision making, artificial intelligence, machine learning etc.

Department of Chemical Engineering

Course Code: SECH2050 Course Name: Fluid Flow Operations Prerequisite Course(s): --

Teaching & Examination Scheme:

Teac	Teaching Scheme (Hours/Week)				Exa	aminati	on Schei	ne (Ma	rks)	
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Flactical	Tutoriai	creuit	CE	ESE	CE	ESE	CE	ESE	TOLAI
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- get the introductory idea and explanation of basic fundamentals of Fluid Flow Operations which is used in the applications of chemical engineering, Porous media movement, Aerodynamics, hydraulics, Marine Engineering, Gas dynamics etc.
- learn Fluid Properties.
- understand the importance of flow measurement and its applications in Industries and to obtain the loss of flow in a flow system.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Properties of fluids and concept of pressure Definitions of Unit operations, Basic concepts of fluids and its application, Properties of fluids (Density, Viscosity, Surface Tension, Compressibility, Capillary, Vapour Pressure, Bulk Modulus, Cavitation, Classification of Fluids), Unit Conversion, Dimensional analysis, Dimensional homogeneity, Dimensionless equations, Raleigh and Buckingham π theorem, Common π groups, Non Dimensional Numbers, Similarities – Geometrical, Kinematics and Dynamic.	03	05
2.	Fluid statics & its application Nature of fluids: Incompressible and compressible fluids, Pressure concepts, Force and Pressure, Pascal's law of Pressure at a point, Pressure measurement by Manometers – U tube, Inclined U tube and Differential, Centre of Pressure, Hydrostatic equilibrium in gravitational and centrifugal field, Hydrostatic forces on surface – Vertical, Horizontal and Inclined, Forces on curved Surfaces, Buoyancy and Buoyant Force, Centre of	04	10

	Buoyancy and Meta Centre, Determination of Metacentric Height, Stability of Floating and Submerged Body, Position of metacentre relative to Centre of buoyancy. Manometers, Inclined manometer, Continuous gravity and centrifugal decanter.		
3.	Boundary layers & its applications Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift, Separation of Boundary layer, Streamlined and Bluffed Bodies.	03	05
4.	Momentum Balance and their Applications Kinematics of fluid flow, Types of flow, Steady and Unsteady Flow, Potential flow, One – two and three Dimensional Flow, Uniform and Non Uniform Flow, Rotational and Irrotational Flow, Stream Lines and Stream Function, Velocity Potential Function, Relation between stream and velocity potential function, Flow nets, Continuity Equation for 2D and 3D flow in Cartesian co-ordinates system, Laminar flow, Reynolds number, Newtonian and non-Newtonian fluids, Velocity gradient and Rate of shear, Expression for co-efficient of friction – Dracy Weishbach Equation, Moody's Diagram resistance for smooth and rough pipes, Viscosity of gases and liquids, Turbulent flow, Nature of turbulence, Eddy viscosity, Eddy diffusivity of momentum, Flow in boundary layers, Laminar and turbulent flow in boundary layers, Boundary layer formation in straight tube and flat plates, Boundary layer thickness, Boundary layer separation and wake formation.	04	10
5.	Basic fluid equations &fluid dynamics Stream line and stream tubes, Average velocity, Mass velocity, Momentum balance, Bernoulli's equation without friction & its applications, Correction of Bernoulli's equation for fluid friction, Pump work in Bernoulli's equation. Newton's law of motion, Euler's Equation and its applications, Momentum Equation, Pitot Tube, Determination of volumetric flow with pitot tube, Principle of Venturimeter, Pipe Orifice and Rotameter.	03	05
6.	Flow of incompressible fluids through ducts and its applications in conduits and thin layers Flow of incompressible fluids in pipes, Friction factor, Laminar flow of Newtonian and non-Newtonian fluids, Turbulent flow in pipes and closed channels, Effect of roughness, Friction factor chart, Drag reduction in turbulent flow Friction factor in flow through channels of noncircular cross section, Friction from changes in velocity or direction, Effect of fittings and valves, Major and Minor Losses in Pipes, Hydraulic Gradient line and Total energy line, Equivalent Pipes, Pipes in series and parallel, Siphon, Power transmission through pipe, Moody's Diagram, Practical use of velocity heads in design, Minimization	06	15

	expansion and contraction losses. Flow through Open Channel: Specific Energy and Specific Force, Critical Flow, Hydraulic Jump, Measurement of Discharge in open Channels.		
	Section II	1	
Module No.	Content	Hours	Weightage in %
1.	Flow of compressible fluids and its applications Introduction to compressible flow, flow through pipes and nozzles, Fans, Blowers ejectors and compressors; Continuity equations, Velocity of sound, Stagnation temperature, Processes of compressible flow.	05	10
2.	Flow of Fluids through Solids Form drag - skin drag - Drag co-efficient. Flow around solids and packed beds. Friction factor for packed beds. Ergun's Equation - Motion of particles through fluids - Motion under gravitational and centrifugal fields - Terminal settling velocity. Fluidisation - Mechanism, types, general properties – applications	05	10
3.	Transportation and Metering Transportation of fluids, Pipes, pipe standards, fittings, pipe joints, valves and their constructional features, Fluid moving machinery: Positive displacement and centrifugal pumps, centrifugal pump theory, concept of NPSH, pump performance and characteristics, Measurement of fluid flow: Orifice meter, venturi meter, pitot tube, rotameter, weirs and notches Wet gas meter and dry gas meter, Area meters; Head meters; Mass flow meter; Hot-wire anemometer, Hot wire and hot film anemometers.	06	15
4.	Applications of fluid mechanics Pipe, fitting and valves, pumps, compressor, blowers and fans, Flow past immersed bodies: Drag, Drag coefficients, Flow through beds of solids, Particle motion, Terminal velocity, Hindered settling, Settling and rise of bubbles and drops, Fluidization, Special cases of Single and two phase flow through packed beds, two-phase gas liquid flow in pipes, Essentials of gas solid flows. Introduction to computational fluid dynamics (CFD).	06	15

List of Practical:

Sr No	Name of Practical	Hours			
1.	1. Determine metacentric height of floating body.				
2.	Measurement of pressure using different types of manometers.	04			
3.	Determine Co-efficient of Discharge by venturimeter, Orificemeter and	04			
5.	Rotameter.	04			
4.	Verification of Bernoulli's apparatus.	02			
5.	Measurement of velocity of flow using Pitot tube.	02			
6.	Measurement of Friction factor for Different pipes & annulus.	02			

7.	Measurement of viscosity using Redwood Viscometer.	02
8.	8. Determine discharge through triangular/trapezoidal / rectangular notch.	
9.	Determine different flow patterns by Reynolds's apparatus.	02
10.	Measurement of lift and drag of aerofoil.	02
11.	Measurement of static pressure distribution around aerofoil using wind	02
11.	tunnel.	02
12.	Experiment on viscosity by stoke's law	02
13.	Experiments on characteristics of centrifugal pumps	02

Text Book(s):

Title	Author/s	Publication	
Textbook of Fluid Mechanics and	R. K. Bansal	Laxmi Publications	
Hydraulic Machines	K. K. Dalisal		
Introduction to Fluid Mechanics and	S.K. Som & G Biswas.	Tata McGraw Hill	
Fluid Machines	S.K. Solli & G DISWaS.	Publication	
Unit Operations of Chemical	McCabo WIL Smith IC Harrist D	MaCrow Hill	
Engineering	McCabe W.L., Smith J.C., Harriott P.	McGraw Hill	

Reference Book(s):

Title	Author/s	Publication
Fluid Mechanics	Frank M. White	Tata McGraw Hill Publication
Fluid Mechanics	R.K. Rajput	Schand Publication
Fluid Mechanics for Chemical Engineers	De Nevers N	McGraw-Hill

Web Material Link(s):

• <u>http://nptel.ac.in/courses/112105171/1</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation of various topics consists of 15 marks during End Semester Exam.

Course Outcome(s):

- understand fundamentals of fluids.
- analyze various flow problems and flow characteristics.
- determine major and minor losses through different pipes.
- apply the concept of fluid mechanics to design various system.

Department of Chemical Engineering

Course Code: SECH2061 Course Name: Physical Inorganic and Analytical Chemistry Prerequisite Course(s): SESH1220 – Chemistry

Teaching & Examination Scheme:

i i											
	Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)							
	Theory	Practical	Tutorial	Cradit	The	eory	Prac	ctical	Tut	orial	Total
	Theory	Flattical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	TOLAT
	03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- provide the basic knowledge of physical, inorganic and analytical chemistry to students in the context of industrial need to make a good foundation in Chemistry which will help to the students in their self-development and to cope up with industries need.
- understand the basics of different chemistry
- make them aware about various analytical techniques used for the analysis of chemical substances
- use physical chemistry and its theoretical principles and experimental techniques to investigate the chemical transformations and Physical changes accompanying them.
- make them aware about the inorganic chemistry and its qualitative analysis.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Properties of Liquid and preparation of solution Define the terms: Solute, Solvent and Solution, Different standards of solutions like Primary standards and Secondary standards, Definition and different methods of expressing concentration, Definition of the Surface tension, Parachor, Refractive index, Molar refraction, Specific refraction, Viscosity.	02	04
2.	Electro analytical techniques for analysis Basic concepts, Standard reduction potentials, Measurement of overall redox reaction tendency, Introduction to Potentiometry, Electrodes (Reference electrode, Saturated calomel reference electrode, indicator electrode, pH electrode), potentiometric titration, Karl Fischer titration (End point detection, The coulometric method)	06	14

		•	-
3.	Phase Rule Introduction, Phase Rule and its merits and demerits, Phase diagrams of single component systems (H ₂ O and Sulphur), two component systems involving eutectic systems (Pb-Ag, Sn-Mg), Applications.	03	07
4.	Nuclear Chemistry Basic terms and concepts, Types of nuclear reactions, Nuclear fission and fusion, nuclear reactors, radiation measurements (Detectors- Gas ionization detectors- principle, Ion chambers- proportional counter, G.M. Counter-scintillation detector- principle, features, Inorganic & organic scintillators, solid state detectors), disposal of nuclear waste.	05	11
5.	Emerging Trends in Green Chemistry Introduction to Green Chemistry, Twelve principles of Green Chemistry with examples, Designing a Green Synthesis, Example of green synthesis (adipic acid, catechol, Methyl Methacrylate).	02	04
6.	Microscopy Techniques Principles, Instrumentation, Analysis of images/artifacts, Applications, AFM (Atomic force microscopy), SEM (Scanning electron microscope), TEM (Transmission electron microscopy), FTIR.	04	10
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Corrosion and its Control Introduction and theories of corrosion, Dry corrosion (chemical), Wet corrosion (electrochemical), Bio corrosion, Mechanism of corrosion, Factors influencing corrosion (ratio of anodic to cathodic areas, nature of metal, nature of corrosion product, nature of medium – pH, conductivity, and temperature), Corrosion control and prevention methods, corrosion inhibitors, cathodic and anodic protection and Electroplating. Protective coatings, chemical principles involved, boiler corrosion, inter granular corrosions.	07	17
2.	Instrumental Methods Of Chemical Analysis: Spectroscopic methods Basic concepts, Instrumentation, Interpretation of data and relevant applications, Ultraviolet spectroscopy (UV), Infrared spectroscopy (IR), Nuclear Magnetic Resonance (NMR), Mass Spectrometry.	06	13
3.	Thermal methods of analysis TGA, DTA, DSC (Principle, Instrumentation, Quantitative aspects of curves and/or Interpretation of curves, Applications)	05	10
4.	Separation Techniques Principle, Instrumentation, selection of column and its specifications, applications and Limitations, Planar	05	10

Chromatography	(Paper	chromatography,	Thin	Layer				
Chromatography), (Chromatography), Gas Chromatography (GC), High Performance							
Liquid Chromatogra	phy (HPI	LC)						

List of Practical:

Sr. No.	Name of Practical	Hours
1.	To determine the strength of the given Hydrochloric acid by Sodium	04
1.	hydroxide conduct metrically.	04
2.	To synthesize Chrome Alum.	04
3.	To determine λ max and concentration of unknown solution of KMnO4	04
5.	in 2N H2SO4 using Colorimeter.	
4.	Determine the amount of Ba^2 + as $BaSO_4$ in a salt solution.	04
5.	To investigate the reaction between $K_2S_2O_8$ and KI.	04
6.	Conductometric titration of strong acid vs. strong base.	04
7.	Determination of dissociation constant of weak acid by pH metric	04
7.	method.	
8.	Determination of cloud point of a surfactant in the presence of salts.	02

Text Book(s):

Title	Author/s	Publication
Text Book of Engineering	Chawla S.	Dhanpat Rai & Co. Pvt. Ltd., Delhi, 2003.
Chemistry		
Engineering Chemistry	Sharma B. K.	Krishna Prakashan Media (P) Ltd,
		Meerut.,2001
Instrumental Methods of Chemical	Ewing G. W.	Tata-McGraw Hill., New Delhi, 2001.
Analysis		
Basis Concept of Analytical	Khopkar S. M.	New Age International Publishers, 1998.
Chemistry		
A Text Book of Quantitative	Vogel A. I.	ELBS UK, 5th Edition, 1996.
Chemical Analysis		
A Text Book of Polymer Science	Billmeyer F.	Wiley Interscience, New York, 3rd ed.,
	W.	1984.

Reference Book(s):

Title	Author/s	Publication		
Analytical Chemistry for	John Kenkel	CRC Press, Taylor & Francis		
Technicians (4 th edition)		Group		
Corrosion Engineering	Pierre R. Roberge	The McCraw Hill Companies		
Principles and Practice	Fielde R. Roberge	The McGraw-Hill Companies		
New-Trends-in-Green-		Kluwer Academic Publishers,		
Chemistry	V. K. Ahluwalia, M.Kidwai	Boston Dordrecht London &		
Chemistry		Anamaya Publishers, New Delhi		
Atomic Force Microscopy	Peter Eaton	Oxford University Press		
Fundamentals of Atomic	Ronald G. Reifenberger	World Scientific Publishing Co		
Force Microscopy	Konalu G. Kenenberger	worrd Scientific Publishing Co		
Principles and Practice of	Robards K., Jackson P.,	Elsevier Academic Press		

Modern Chromatographic	Haddad P A.	
Methods		
Fundamentals of Analytical	Douglas A. S., Donald M. W.,	Brooks Cole; 9 th edition
Chemistry	Holler H. J., Crouch H. R.	biooks cole; 9. edition
Introduction to Spectroscopy	Donal L. P., Gary M. L., George	Brooks Cole
	S. K. , James A. V.	DI OOKS COLE

Web Material Link(s):

http://nptel.ac.in/courses/105104148/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

- familiarize him/herself with the basics of different chemistries used in chemical industries.
- have theoretical and practical knowledge about modern analytical techniques and its quantitative analysis.
- able to perform in industry for various analytical tools.

Department of Chemical Engineering

Course Code: SECH2070 Course Name: Chemical Engineering Thermodynamics-I Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)										
Theory	Practical	l Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total			
Theory	FIACULAI		Tutoriai	Tutorial	Tutoriai		creuit	CE	ESE	CE	ESE	CE	ESE
03	00	01	04	40	60	00	00	50	00	150			

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help the learners to

- understand and appreciate thermodynamics as applied to various Chemical Engineering Processes.
- avail practical experience on the principles, viz., thermodynamic laws, Solution thermodynamics, Phase equilibrium and reaction equilibrium.

	Section I								
Module No.	Content	Hours	Weightage in %						
1.	Introduction to the laws of Thermodynamics: Concept of Equilibrium, Entropy & Gibbs Free Energy, Laws of Thermodynamics (Open and Closed Systems) and Equations of Change (dU, dH, dA, dG).	07	10						
2.	Properties of pure fluids: PVT behavior including EOS for mixtures; Fugacity estimation/ calculations based on PVT behavior, Heat effects accompanying chemical Reactions. Phase equilibrium criteria and VLE calculations for different pressure ranges including flash calculations.	07	15						
3.	Estimation of VLE data: Fugacity, Fugacity Coefficient, Activity, Activity Coefficient, Activity coefficient calculation from experimental VLE data and data reduction, applications of Gibbs-Duhem relation for calculations of and consistency check for VLE data.	05	10						
4.	Phase Diagrams in Thermodynamics: Phase diagrams for miscible, partially miscible and immiscible liquid mixtures, introduction to LLE and VLLE calculations.	04	15						

	Section II		
Module No.	Content	Hours	Weightage in %
1.	Thermodynamic Properties of Solutions: Introduction to fugacity and activity, Activity Coefficients-Partial molar properties- miscible system, immiscible system, Chemical potential as a partial molar property-Lewis randall rule-Roults and Henry's law-Gibbs Duhem Equation Mathematical relation among thermodynamic functions, Maxwell's relations, Interrelation between H, S, U, G, C _p , C _v , properties of single- and	16	30
	two-phase system. Types of thermodynamic diagrams. Partially immiscible system, testing of vapor-liquid equilibrium data, Van Laar equation. Margules equation, Redlich-Kister equation, P-X- Y, T-X-Y, & X-Y Diagram, vapor-liquid equilibrium of ideal and non-ideal solution		
2.	Refrigeration and liquefaction: Carnot refrigerator, Vapour compression cycle, Absorption refrigeration, Choice of refrigerant, Heat pump, Liquefaction processes.	06	20

Text Book(s):

Title	Author/s	Publication
Introduction to Engineering	J.M. Smith, Hendrick Van	McGraw Hill, New York, 2005.
Thermodynamics	Ness, Michael M. Abbott,	
Chemical Engineering	S. Sundaram	Ahuja Publishers, New Delhi,
Thermodynamics		2001
A Textbook of Chemical	K.V. Narayanan	PHI Learning, 2004
Engineering Thermodynamics		

Reference Book(s):

Title	Author/s	Publication		
Chemical Engineering	B.F. Dodge	McGraw Hill, New York, 1971.		
Thermodynamics	D.P. Douge	Mediaw IIII, New Tork, 1971.		
Chemical Engineering	Y.V.C. Rao	Universities Press (1997)		
Thermodynamics	1.V.C. NOU	011170151005 11055 (1997)		
Chemical Process	D.C. Kulo	Prentice Hall India, 1994		
Thermodynamics 3 rd Ed,	B.G. Kyle			
Chemical Process Principles	Hougen, O.A., Watson,	John Wiley & Sons, (CBS Publishers &		
Part II	K.M., and Ragatz, R.A.	Distributors, New Delhi).		

Web Material Links:

• <u>http://nptel.ac.in/courses/103106070/</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of performance of Tutorial which should be evaluated out of 10 marks for each Tutorial and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation of various topics consists of 15 marks during End Semester Exam.

Course Outcome(s):

- calculate enthalpies, entropies and free energies of real gases from (a) equations of state (b) measured quantities
- calculate saturation pressure and latent heats of vaporization from cubic equations of state.
- able to correlate experimental VLE data of pure component and ideal mixtures with suitable equations.
- enhance their technical skill in the form of numerical analysis.

Department of Chemical Engineering

Course Code: SECH2080 Course Name: Mass Transfer Operations - I Prerequisite Course(s): --

Teaching & Examination Scheme:

	Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)							
Ī	Theory	neory Practical Tutorial	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
	Theory		Credit	CE	ESE	CE	ESE	CE	ESE	TOLAI	
ſ	03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help the learners to

- learn the concept of diffusion in gas, liquid & solid.
- understand the basics of inter-phase mass transfer.
- learn application of gas-liquid operation and simultaneous heat and mass transfer operations.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Introduction Introduction to Mass Transfer Operation, Classification of mass transfer	02	05
2.	Diffusion Introduction, Molecular diffusion, Flux, Models of diffusion, Fick's law, Molecular and eddy diffusion, Molecular diffusion in gases, Steady state molecular diffusion in a binary mixture through constant area - fluids at rest and laminar condition and for gases, A diffusing in non-diffusing B, equimolar counter current diffusion for gases, A diffusing in non-diffusing B, equimolar counter current diffusion for liquids, Diffusion in solids, Some special types of diffusion in solids.	10	20
3.	Mass Transfer Coefficients and Analogy Equations Introduction, Types of mass transfer coefficients, Dimensionless groups in mass transfer, Analogy between momentum, heat and mass transfer, Mass transfer coefficients for simple geometrical shapes.	06	15
4.	Interphase Mass Transfer Introduction, Theories of interphase mass transfer – two film, penetration, surface renewal and boundary layer theory.	04	10

	Section II		
Module No.	Content	Hours	Weightage in %
1.	Humidification and dehumidification Introduction, Terminologies used, Adiabatic saturation temperature, Wet-bulb temperature, Operation involving gas- liquid contact, Water cooling, Adiabatic Humidification – Cooling, Cooling range and approach, Nonadiabatic operations – evaporative cooling, Equipment for air-water contact, some accessories and operational features of cooling tower.	09	15
2.	Drying Introduction, Drying Equilibria, Some important terminologies, Mechanism and Theory of drying, Drying rate curve- Constant Rate period, Cross circulation, falling rate and through circulation, Continuous drying, Rate of batch drying – Cross circulation and through circulation, Rate of continuous drying, Batch driers – direct and indirect driers, Continuous driers – direct and indirect driers, selection of driers.	07	20
3.	Crystallization Introduction, Solid Liquid equilibria, Solubility data, Supersaturation, Material and energy balance, Crystallization process, Method of nucleation, Crystal growth, Mier's supersaturation theory, Fractional crystallization, crystallization and precipitation, Caking of crystals, Crystallization equipment, Working principle of crystallizers like agitated batch, Swenson- walker, Circulating liquor and magma, Melt crystallization – Suspension based and progressive freezing, Purification, Reactive crystallization.	07	15

List of Practical:

Sr No	Name of Practical	Hours
1.	Solid In Air Diffusion (Vaporization Of Naphthalene Balls)	02
2.	To determine the rate of drying for rotary dryer for different air flow rates & different air inlet temperatures.	04
3.	Mass Transfer With/Without Chemical Reaction (Solid-Liquid System – Dissolution Of Benzoic Acid In Aqueous NaOH Solution)	04
4.	To calculate the mass transfer coefficient in the Humidification and Dehumidification column.	04
5.	To perform Spray Drying.	02
6.	Vapour In Air Diffusion - To determine the diffusion coefficient of an organic vapor (i.e. CCl ₄) in air.	02
7.	To study mass transfer operation in water cooling tower for different flow & thermos dynamic conditions.	04
8.	Liquid – Liquid Diffusion - To study the effect of temperature on the diffusion coefficient.	04
9.	Natural Draft Tray Dryer - To perform drying test on solids & heat and mass transfer analysis of a drying process.	02
10.	To study Swenson Walker crystallizer.	02

Text Book(s):

Title	Author/s	Publication
Mass Transfer – Principles and	A.P. Sinha and Parameshwar De	PHI Learning Private
Operations		Limited, New delhi
Mass Transfer concepts	K Ashokan	Universities Press
Unit Operations of Chemical	W L McCabe and J C Smith.	McGraw-Hill
Engineering		International
Mass Transfer Operations	Trebal, R.E.	McGraw-Hill, Inc.

Reference Book(s):

Title	Author/s	Publication
Chemical Engineering Vol II, 6th Ed.	J.M. Coulson & J.F. Richardson	Elsevier, 2003 or Pergamon Press.
Unit Operations	G.G. Brown Ed.	John Wiley & Sons, 1950
Transport Processes and Separation Process Principles' 4th Ed	C.G. Geankopolis	Prentice Hall India, 2003.

Web Material Link(s):

• <u>https://nptel.ac.in/courses/103103035/</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

- familiar with the basic phenomenon of mass transfer involving phases.
- able to apply the mathematical and design concepts of mass transfer in gas liquid systems like absorption, humidification, drying and crystallization.
- gaining good knowledge of required optimum condition for a gas-liquid system.
- familiar with fundamentals of thermodynamics as applied to various processes.
- understand the properties as applied to ideal and real gases.
- understand the equilibrium states for mixture of gases, phases and chemical reaction.
- verify the fundamentals learnt viz., application of thermodynamic laws, solution thermodynamics, phase equilibrium and reaction equilibrium in Chemical Engineering thermodynamics by conducting experiments and carry out the evaluation.

Centre for Skill Enhancement & Professional Development

Course Code: SEPD2020 Course Name: Values and Ethics Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	aminati	on Schei	ne (Ma	rks)					
Theory	Practical	Tutorial Credit		The	eory	Prac	ctical	Tut	orial	Total			
Theory	FIALLILAI	Tutoriai	Tutoriai			Credit	CE	ESE	CE	ESE	CE	ESE	TULAI
02	00	00	02	40	60	00	00	00	00	100			

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to:

- develop a familiarity with the mechanics of values and ethics.
- understand basic concepts of values and ethics
- explore and understand values, ethics in context of professional, social and persona spectrum
- explore an understand values, ethics in context of globalization and global issues
- explore an application of values and ethics in personal, social, academic, global and professional life.
- to facilitate the learners to understand harmony at all the levels of human living and live accordingly.

	Section I		
Module	le Content		Weightage
No.	content	Hours	in %
	Introduction to Values		
1	Definition and Concept	02	10
1.	• Types of Values	03	10
	Values and its Application		
	Elements and Principles of Values		
2.	Universal & Personal Values	06	20
Ζ.	Social, Civic & Democratic Values	00	20
	Adaptation Models & Methods of Values		
	Values and Contemporary Society		
2	Levels of Value Crisis	00	20
3.	Value Crisis Management	06	20
	Values in Indian Scriptures		

	Section II		
Module No.	Content	Hours	Weightage in %
1.	 Ethics and Ethical Values Definition and Concept Acceptance and Application of Ethics Ethical Issues and Dilemma Universal Code of Ethics: Consequences of Violation 	07	25
2.	 Applied Ethics Professional Ethics Organizational Ethics Ethical Leadership Ethics in Indian Scriptures 	08	25

Text Book(s):

Title	Author/s	Publication
Values and Ethics in Business and	By Samita Manna, Suparna	PHI Learning Pvt. Ltd.,
Profession	Chakraborti	New Delhi, 2010

Reference Book(s):

Title	Author/s	Publication			
Just a Job?: Communication, Ethics,	George Cheney	Oxford University Press,			
and Professional life		2010			
Professional Ethics and Human	M. Govindarajan, S. Natarajan,	PHI Learning Pvt. Ltd,			
Values	V. S. Senthilkumar	2013			
Creating Values In Life: Personal,	By Ashok Gulla	Author House,			
Moral, Spiritual, Family and Social		Bloomington, 2010			
Values					
E-Book(s)					
Ethics for Everyone, Arthur Dor	bin, 2009.				

(http://arthurdobrin.files.wordpress.com/2008/08/ethics-for-everyone.pdf)

• Values and Ethics for 21st Century, BBVA. (<u>https://www.bbvaopenmind.com/wp-content/uploads/2013/10/Values-and-Ethics-for-the-21st-Century BBVA.pdf</u>)

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcomes:

- understand and relate the concepts and mechanics of values and ethics in their life.
- correlate the significance of value and ethical inputs in and get motivated to apply them in their life and profession.
- realize the significance of value and ethical inputs in and get motivated to apply them in social, global and civic issues.
- learn to apply such principles with reference to Indian scriptures.

Center for Skill Enhancement and Professional Development

Course Code: SEPD3030 Course Name: German Language Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)										
Theory	Practical	Tutorial	Tutorial Cradit		eory	Prac	ctical	Tut	orial	Total			
Theory	Flactical	Tutoriai	Tutoriai			Credit	CE	ESE	CE	ESE	CE	ESE	TOLAT
02	00	00	02	40	60	00	00	00	00	100			

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- to develop and integrate the use of the four language skills i.e. listening, speaking, reading and writing.
- use the language effectively and appropriately on topics of everyday life situations.
- develop an interest in the appreciation of German.
- to develop an intercultural awareness.
- to enhance the ability of the candidates to express their ideas and feelings in their own words and for them to understand the use of correct language.
- to appreciate the language as an effective means of communication.
- understand language when spoken at normal conversational speed in everyday life situations.
- understand the basic structural patterns of the language, vocabulary and constructions.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	 Introduction to German Alphabets, German accents German Numbers What are the similarities and differences between English and German? Greetings 	2	15
2.	German Time Basic Introduction	2	08
3.	Vocabulary part-1 • The days of the week • The months of the year • Seasons • Directions • Weather	2	05

	Vocabulary part-2		
4.	• Family		
	Colors and Shapes		07
	Day/time indicators	2	
	Body parts		
	Clothing		
	Vocabulary Part-3		
5.	Food and Meals		05
	• Fruits, Vegetables and Meats	2	
	Sports and Hobbies		
6.	Transportation	2	05
	House and Furniture	2	05
	School Subject		05
7.	Places	2	
	Common Expressions		
	Section II	ł	I
Module	Content	Hours	Weightage
No.		nours	in %
	German grammar		
	• Verb Sein (to be)		10
1.	 Verb Haben (to have) 	2	
1.	 Introduction of Regular verbs and Irregular verb 		
	 Konjugation of Regular verb 		
	First group verbs('EN' group)		
	 Konjugation of Regular verbs 		
	 Second group verbs('Ten/Den' group) 		
2.	 Konjugation of Irregular verbs 	2	10
	 Third group verbs (Stem change verb) 		
	Fourth group verbs (Spell Change Verb)		
	 Nicht trennbare und trennbare Verben 		10
3.	Die Modalverben	2	
	Personalpronomen-Nominativ		
	• W-Frage		
4.	 Ja/Nein-Fragen 	2	10
	 Nomen und Artikel-Nominativ 	-	10
	Die Anrede		
	Nomen-Genusregein		
5.	• Adjektiv	2	10
5.	Nomen und Artikel-Akkusativ		
	Personalpronomen-Akkusativ		
6.	Practice of Writing	2	-
	Practice of Speaking		
7.	Practice of Listening	2	-
8.	Practice of Reading	2	-

Text Book(s):

Title	Author/s	Publication
Namaste German	Yoshita Dalal	Yoshita Dalal

Reference Book(s):

Title	Author/s	Publication
Fit In Deutsch	Hueber	Goyal Publication

Web Material Links:

- <u>https://www.youtube.com/watch?v=iGovllrEsF8&list=PLRps6yTcWQbpoqI0CmqMeI1HLn</u> <u>LIRmO t</u>
- https://www.youtube.com/watch?v=GwBfUzPCiaw&list=PL5QyCnFPRx0GxaFjdAVkx7K9Tf EklY4sg

Course Evaluation:

Theory:

- Continuous Evaluation consists of an Internal Exam of 30 marks.
- German Speaking Exam consists of 10 marks.
- End Semester Examination consists of 60 Marks exams.

Course Outcome(s):

- demonstrate speaking, reading, writing and listening in German.
- understand German Technology.
- communicate easily in four Language and they can get good job in German Company.
- demonstrate the level of proficiency necessary to enable them to function in an environment where German is used exclusively.